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A NEW PROOF OF GLOBAL CONVER (ENCE

FOR THE TRIDIA C1ONAL QL AL (ORITHM

by

W. Hoffmann1 and B.N. Parlett

Abstract

By exploit ing the relation of the QL algorithm to inverse iteration

we obtain a proof of globa l convergence which Is more conceptua l and less

computa tional than prev i ous analyses. The proof uses a new , hut sirnpli~.

error estimate for the first step of inverse iteration. 
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1 . Introduc ti on

The QR Algorithm has become the preferred method for findin g ~.‘: the

• el genva l ues of a given matrix , syninetric or nonsynrietric. One of the hiqh

points in the field of matrix computations is Wilkinson ’s discovery

[Wi lkinson , 19681 that the algorithm , when used with the proper shift •

strategy , converges for ~~ syrnetric, tridiagona l matrices . This result

permits us to write clean efficient programs for computinq these eiqenva1ues~

there is no need for routine checkinq for rare unacceptable cases. The

excellent asymptotic convergence rate for the method was already known .

Each iteration in the algorithm is effected by making a sequence of

specially chosen plane rotations. Wilkinson ’s proof Is based on a careful

scrutiny of the last three of these rotations and a rather complicated com-

putation is invo l ved . A careful, detailed exposition of the proof can ho

found in (Lawson and Hanson , 1974, Appendix Bi .

The result is so nice that one is tempted to seek a proof which does

not require explicit formulae for the elements of the next matrix in the

(IR sequence. The one presented here abandons the plane rotations in favor

of the relation of the QR algorithm to i nverse iteration , see for instance

(Parlett and Poole, 19731 . The discussion Is in terms of the (IL algorithm

which is a convenient variation of the origina l QR alqorithm . Section •~

gives more details.

We try to adhere to the standard notationa l conventions: l ower caso

roman letters for column vectors , lower case greck letters for scalars (all

real here), and upper case roman letters for matrices (reserving syninetric

letters for synv~etric matrices). We wri te 7T for the transpose of 1.

I for ~~~~~~~~~~~ and A-\ for A - U. Al l matrices are n ’n unlocs

the contrary is stated . Ix~ ~
‘1
x and we write trid iaqona l I’hltric~ . /~

as shown below :
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a1 B1 0

a2 82
A~~ 0 8 2 c13 .

Bn i

6n-1 a~

The QI transformat ion, with shift a, transforms syninetric tridiagona l

A i nto syninetric tridlagonal A QTAQ where Q = (q1,q2,. .. ,q,~) is

orthogonal and depends on a.

For the busy reader who is familiar wi th the subject we present a

brief outl ine of the argument now. One special piece of notation is needed:

MPk denotes the set of all manic polynomials (leading coeffIcient 1) of

degree k. We observe that

IB
1~~2 J = mm lq (A)q 1 1 , Lanczos ,

• q~EMP2
< I(A_ct 1)(A _ c T ) q 11, the artful choice,

= I(A-a
1

)e 1ii , the connection with inverse iteration , Lema 2,

= , s ince A is tridiagonal ,

< la~~
—a

~~~ I8 2 I , if a is Wilkinson ’s shift , Lenina 4 ,

I , by a characteristic property of

W i lk inson ’s shift.

Only the strict inequality ts really new and a sharper form

of it is used in Sections 5 and 6 to show that

< (2/5)($( k l )
8
(k.l)

)2 for all k and also that ~ I B 1~2~/ ~’2. Th i s

establishes global convergence, i.e. ~~k) ~ o, in a clean way.

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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2. Ortho~~ a 1 Reduction to Tridia~pj~)Form

Any syn,netric matrix M may be reduced to tridiagonal form A by an

orthognoal similarity transformation. In symbols

(0) A = GTMr1 , I = GTG =

In fact, when the off diagona l elements are not zero then A is

compl etely determined by g1 (or by ~~~ 
Our interest is in expressions

for products of the 
~~~~

, j = 1 ,2 From the pioneerin q work lLanczos .

19501 we can deduce that

minIq~(M) g~N

over al l monic polynomials ~ of degree j with equality only when q~(\)

is the leading princ i pal j  xj minor of \-A .

However we prefer to use some alternative formulas which yield rather

more information and are also quite well known.

A useful way of understanding the relationships hidden in (0) is to

equate col umns on each side of the equation

(1) G A = M G

and deduce that the columns (g 1,g 21. ..,g~} form an orthonorma l basis for

the so-called Krylov subspace of Rn which is spanned by 
S

• g1,Mg1,M
2g1,.. . ,M’~

1g1 .

Let P~ denote the orthogonal projection of R~ onto K~ and let P1 
he

its complement. For example, P1 = g1 g~, P2 = ~1g
~ +~ 2q~.
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LEMMA 1. J t r  GA = MG w~ th G = (g1 ,...,g~) ~rth o~ona l 1 th~’n

‘ P1Mg1 ,

9362B1 
= P2MP1Mg1

Proof. By equating the (1,1), (1,2) , and (2 ,2) elements on each side

of (1) we find

(2) a1 
= g~Mg1 ~l 

= g~Mg2 = g~Mg1 , 
= g~Mg2

Now equate first columns on each side of the equation GA = M( and rearrange :

~2~l 
= Mg1 

-

= Mg1 
_ g

1 (g~Mg1 ) , us i ng (2 )

= (I—g 1g1 )Mg1
= P1Mg1

Next equate the second col umns on each side and rearranqe :

~3~2 
= Mg2 - 92a2 

-

= Mg2 
- g2(g~Mg2) - g1 (g~Mg2) , using (2)

= (I-g 2g2-g1g1 )Mg2 ,

= ~2Mg2

Multiply (4) by 
~ 

and use (3) to obtain the formulas in the l ema. Li

In the next section we will apply this lenna to the case when Ii = A

is also tridiagonal and Mg1 lies in the plane of g1 and e1.

I
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3. Th~ QLT ransform and Inverse I terat ion
S 

The QL transform of A is denoted by A , has the same form as A ,

and Is defined by

(1) A = Q TAQ

where Q is the orthogonal matrix which satisfies

(2) A- a = QL

and I is lower triangular with positive diagona l elements. The scalar ‘

S 

is called the shift . Note that Q is the result of performing the Gram-

Schmidt orthononnalizing process to the columns of A-~ from right to left.

The QI algorithm iterates the QL transform , choosing an appropriate shift

at each step.

The QL transform is related to the .~arlier (IR transform in a very simple way~

if ~ = ~~~~~~~~~ ,e1 ) and A is the QI transform of A then IAT is

the QR transform of IAI . The QI algorIthm has some minor advantages from

the prograniner’s point of view and has become the preferred method. Conse-

quently we will present our results in its terminology.

In practice the matrix Q which turns A into A is never formed

explicitly. Even in thee the columns of Q are determined in the order

~~~~~~~~ 
,q2,q1. Nevertheless A is completely determined by q1 and

connects the QI trans formati on with s impler processes ~ike inverse

iteration .

We are now going to formulate a result which is qu i te well known.

I
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LE?44A 2. Let QTAQ A bt~ the QL tranaf or~’, o~’ unreduced tridiu-

~~Z A ~,ith real shift  a. Then q 1 Qe1 s a t is f ie s

(A-o)q 1 e1r

rf a is an eigenvalue of A then i O~ ather t ise i is t; li

~~~~~~~~~~ ~~~~~~~~~~~~~~ :~‘;:~~h enBure s that 1q11 1; 80 t = l/I (A—a~~
1e1 ij

Proof. Transpose equation (2) above , post multiply by Q, and use

QTQ = I to find

(3) (A-o)Q z i)

Equating column 1 on each side shows that

(4) (A—a)q 1 
= e1t11 ~ 0 .

If a is not an eigenvalue then

(5) 1 = 1q1 1 =

and we have written i for If a is an eigenvaiue then

0 = det(A-a) = det Q . det I

The Gram-Schmidt process begins wi th q
~ 

(A_ o)e~/Q~~. Because A is

unreduced = I(A-a)e~U ~ 0. Moreover, for the same reason , the last

(n- i) columns of A-a are linearly inde~endent. Consequently

0 , j n,n—l ,...,3,2

for all a. It follows that on the last step of the Gram-Schmidt process

a null vector Is obta ined. Hence 
~i 

0 and q1 may be any unit

L.
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vector orthogona l to all the other q ’s. This gives only a choice of siqn

for q1 and in either case (A-~ )q1 0. Ii

Equation (4) shows that the first column of Q is the normalized
• result of one step of inverse iteration with shift ~‘.

We now use lenina 2 to get expressions for the off diaqonal elements

• which are produced in the course of the QI algorithm .

LE?’~IA 3. . A Q AQ .~~. ~ (IL A ~~~ ~~~~~ .

t i s in t11 1
= il

~~ 
sin~~~ .

:.‘ 1~ v c ~ t~ ~ 
;~. ~~~~~ :~ ~~~~~~~~~~~~~ e1 ~~~~~ ~:~~A ze. I :~ :~~~ ‘ : S t K1,

H _____ —___ __________J
Proof. Recall that in Lenina 1 P1 1 - q1q~3 P2 = I - q1q

:~ - ~~~~~~

We have

Lenina 1

~ ~1(q1~1# e 1 t )  , Lenina 2

=

= ‘
~ (e1 — q1 cos

Further

q3t~1~., ~2A~1Aq1 , Lema 1

= t~2A (e 1 — q1 cos’t~1) , two lines up,

= i~ 2 (e 1.t 1 ~e2i~1 - q 1 cos. 01) , A is tridiaqonal,

= 

~
‘l~2~2 ~2 annihilates K2 span(q1,A q1 )

= span(q1,e1~
S 

On taking norms the results follow. 0

1 111
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Using the same technique it can be shown that

~1~2 
“

~~
j = 8i82”~~j —1 T S ~~f l G~

Lenina 3 holds for any shift strategy but the ,lobal convergence follows

from a s imp le bound on i which holds when Wilkinson ’ s shift is used.

4. Wilkinson ’ s Shift
• ~i

Given A then Wilk inson ’ s shift w is that eigenvalue of

~l ~2
which is closer to ct.~. In case of a tie either eigenvalue may be used.

So we have

2- B j = 0

and

I I a 1~ w ’ I

Let us write 6 = (a2-c~1 )/2 and observe that

~~~, w ’ = (
~l~~2

)/2 ±

This shows that

I lcz2-wl

wi th equal ity if , and only if , 6 = 0. By noting that is the geometric

mean of f ct1-~ J and ~ct2-w( we have

______ = ______ = 4/a1-w 
<ict2 -wI 

~~~~ 
—

wi th equality if , and only if , 6 = 0.

• — —~—-•—~~~~~- —~~- -----~~ - - L_~~i
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5. A Res idual Estimate for Inverse Iteration

Since A is syninetric and tridlagonal we know that when B. is small

compared with lc*1-a2f then e1 (5 a good approximation to an elgenvector

and Wilkinson ’s shift uj is an even better eigenvalue approximation than

a1. A wel l known way to obtain an improved normali zed eigenvec tor i s to

solve for q1 the equation

(1) (A—w )q 1 = e1 r

where T is the positive scale factor which ensures that 1q 11 = 1.

Our concern here is at the oppos ite extreme. If Bi is not necessarily

small and e1 Is a poor approximation to an elgenvector of A how bad can

(~ ,q
1

) be as an approximate eigenpa ir? A good measure for this approxima-

tion is

T/ UA I~

which is the norm of the “res idual” vector (A— w )q 1 relative to PA l .

We now show that (w ,q1) cannot be arbitrarily 
bad; In fact r < 18 2 1.

For convenience we write

= a1 -

and define ~ 
= (hhl~

T2,~3~~ 
) by

(2) (A-w)p = e1 .

LEMMA 4. When Wilkineon ’s sh i f t  w is uBed in (1) then

2 - 2 2
2 1 

—l
~ ~ -2 2~~F2 <

ct1 +8 1 a 1 82 14 1

_ J
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Prop_f. If w is an elgenvalue of A then the QL transform wil l mali ’

q1 an elgenvector, so • 0. From now on assume that A-4A~ is invertibl e .

From (1 ) and (2)  we have

= p/lpl

and

(3) 2 l/1p1 2 ‘-

The first two equations In (2) are

(4) 
~
‘l ’~l ~ i’1n2 1

(5) 14l~1 l ?
fl

2
~~~~~~~~

2
~~~

3 
0

Recall the definition of ~ and form 
~~~~~ 

“ (4) - (5) to find

(6) 0 + O - t 12n3 -

In fact (6 ). together with the fact, from (4), that and u ,

cannot vanish s imul taneously, is sufficient to prove that 1142 1.
However, we can easily bound away from 0. By elementary geometry

the distance of the origin from the line (4) In the n 1, ti .~ plane is

Hence

(7)  + 
~
‘ l/ (~~+8~)

and the result follows readily from using (6) and (7) in (3). H

The surprisingly simple expression (6) for 11
3 

ensures , hv lt ’.r lf . th.~t

is monotone decreasing . The extra information conta i ned in (1) shows
that the decrease is linear right from the start.

Lenina 4 gives more Info rmation than we need. To simplify later di~uus-

slon we use the harmon i c mean , defined for positive 1., ii by

H(L,n) ~~~~ +~~— ‘

J
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On majorizing 
~“l~ 

by 14i Lenina 4 simplifies to the useful

[ COROLLARY. U( 14~4-i4~) 
• 

1
6. Globa l Con verjence of the QL A1~or1thm

The (IL alqori thm produces a sequence of unreduced syninetric tridiaqona l

matr ices ~~~~ k 1 ,2,... and the glorious fact is that, always .

‘ o rapidly as k “ , revealing as an increasingly good

• approximation to an eigenvalue of ~~~ When is accepted as

F negligible the algorithm continues to transform all but the first row and

j column of ~~~ and thus all the eiqenvalues may be found In turn .

The convergence of I14~~’ I need not be monotonic but the kvv fact I’.

that { 114~
k)14~k) I, k 1, 7,... Is monotone decreasing ~~ i t~ 1 inn t i- ~ 0 .

Using the corollary of Lenina 4 in Lenina 3 and noting tha t H ( , i~~ ) 
~~~

we obtain

LEMMA S ~~~~~~~~~ ‘ 

— 

(IL

(a) ~ 
2 mint2 14~ ,~~

), l 14l~2 I/~
?}

(b) (~1~2 ) 2 
t4

2
t
2 (14l 2 )

2h1(~~/~~,~) (141t~~
) -

This establishes the monotonic decline of hut to see ’ th at

the lim it Is zero It suffices to consider two successiv.’ steps in the

al gorithm and so the superscript k can be dropped.

Lenma 5(b) shows that the reduction in Is substantial unless

I i~7/ 141j  Is small. However Lenma 5(a) shows that such an unfortunate e’at~o

L
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cannot persist. The next result makes this precise . We recall that the

harmonic mean, H(E~,rt), of positive numbers L and n is syninetric, homogeneous

• (of degree 1) and monotonic Increasing in each of its arguments separately.

THEORFM 1. •
‘ . ~ A . A , A ~s’ thr~ ’ u~’5 ..’~~ ~~~~~~ ~~~~ t 1u~ (II

~i ’ .::i, ’ : ’ , ’ ~4. l: ,:~~ ~‘ : :k: ~~~~~ ‘~~ ~hz _~t .

H -* 

(~ l~2)2 
< (81 142)

22/(3+~~) < (2 / 5)(8~~2 ) 2

Proof. , Lenina 5b for A ,
H(~~4~~) , Lenina 4 Corollary for A ,

= ~~~~~~~~ , homogeneity of H,

monotonlcity and Lenv~a 5 for A ,

t2H(~-t3~,r 2 ) , homogeneity and syninetry of H.

Lenina 4 Corollary for A ,

= ~~~~~~~~~~~~~~~~~~ , homogeneity of H, p =

maximizing over all p 0.

We note that

H(~,p 1 ).H(~,H(1 ,~~fl ~~~~~~~~~~~~~~~~

= l/ [~-+ (~~ +p~~)/2] ,

[1

COROLLARY 1. c’~’ ~e (IL ~ ~~~ ,‘~~ thin with Wi ?ki’w~ 2 ‘~~ ithi~~
’t

--~ 0 a~ k - -e 
~
‘

-.4
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p~~~f 114
(2k+l)8(2

k4~l) 1 18
(2 k )

8
(2 k )

1 (2/5)k 114 (l)(4
(l)

1 . n

The asymptotic convergence rate is much better than this. What is

• 
. remarkable is that convergence is linear , with a good ratio , right from

the start.

COROLLARY 2. ~.‘ ~ QI ;~ ~~ ~~~~ ~~~ 
;, ~~~~ ~ 

‘,
~ ~~~ ~~

8(k) 0 ~~~ k

Proof. By Lenina 5(a’ , ~ ~ 
l 14l~

) I/ ’~ 
Convergence follows from

Corollary I. ii
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7. Local Convergence

We suppress the fact that all the elements a1, t3l~ 
etc. depend on k ,

the i teration count. We know that as k -e both 0, ‘- 0.
In the usual case 0 as well. In this case 6 ~ 0 because

the elgenva lues of an unreduced tridiagona l matrix are distinct (although

sometimes very close). The question we take up now is the asymptotic

convergence rate. From Lema 3 I~~I = i- I sin 
~~~ 

but the estima te for i

in Lema 4 does not reflect the asymptotic regime. In fact, as k

T = 1/Ipi 0( 1/ In i) )

where (A-c~)p = e1.

Solving these equations as before yields

71
3 

~~~~~~~~~~

~2
&3 83714

2
1 2
-2- - -
a.,ct.~ cz!,B.~1TA ~2

iT = — ‘ ‘ ‘ ~
‘ + —

1 2  1

In the usua l regime
~~~ +n 2 1/2

)sln o~I = {n~n~+.~;:~J =

and using the first terms in the expressions for it
1 

and 112

- = O( 14~~~) -

This Is bet ter than cubic convergence.
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We have not been able to prove that the anal ysis given above always

obtains. The possibility remains open that 0, 
~2 

n $ 0. In this

case 111 still dominates the other elements of n but it is the third

term in the above expression for which brings this about. Thus, in

such a case

I 

~l~’~~2
I k11

1 5l fl °~~
l 

~1~3”~2
and

= O(l
~ l 141 I) 0(~~)

Thus quadratic convergence occurs even in this unstable, and very s pecia l .

eventuality .

Ac knowledgement
It is a pleasure to thank W. Kahan for his helpful coninents .



~~
- 

-~~-~~~~~~-,-- —v
~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

18

References

Lanczos, C., “An Itera tion ~‘ethod for the Solution of the Eigenvalue Problemof Linear Differential and Inte9ra I Operators,” J our . of Res. of th1
Nat. Bur. of Standar d8 45 (1950), 255-282.

Lawson, C.L. and Hanson, R.J., SoLving Leaat Square s P r oblem s , Prentice
Hal l (1974).

Parlett, B. and Poole, W.G. Jr., “A Geometric Convergence Theory of the (IR ,
LU, and Power Iterations,” SIAM Jour . Nzuner. Anal.  10 (1973), 389-412.

Wilkinson , J.H., “Global Convergence of Tr idiagonal QR with Or ig in Shifts ,”
Linear A lgebra and I ts  App lication8 1 (1968), 409-420.

_ _ _ _  ii


